
Gli Agenti di Intelligenza Artificiale
di Massimo Vailati
27/01/2026

INTELLIGENZA ARTIFICIALE AGENTI IA WORKFLOW AUTOMATION OPENAI AI AGENT

LICEO, SCIENTIFICO S.A., TT INFORMATICA

Contenuto: introduzione al concetto di agente di Intelligenza Artificiale (IA), definito come un sistema in grado di

percepire, decidere, agire e valutare per raggiungere un obiettivo.

Attività pratica: sperimentare la logica base di un agente reattivo, creare un agente complesso che analizza la richiesta di

un utente e la ridireziona all'agente specializzato corretto.

Negli ultimi anni, l’Intelligenza Artificiale (IA) è uscita dai laboratori di ricerca per entrare nella nostra vita quotidiana: dagli

assistenti vocali come Siri e Alexa ai chatbot, fino alle auto a guida autonoma.

Ma cosa rende possibile tutto questo? Una delle risposte chiave è il concetto di agente intelligente.

Cos’è un agente IA

Un agente di intelligenza artificiale è un sistema in grado di:

In altre parole, un agente è un “attore” che osserva, ragiona e agisce in modo autonomo o semi-autonomo.

Percepire l’ambiente in cui si trova (attraverso sensori, dati o input);

Decidere cosa fare, elaborando le informazioni ricevute;

Agire sull’ambiente per raggiungere un obiettivo tramite attuatori o output digitali.

Valutare i risultati eventualmente adattando le sue decisioni future (se dotato di apprendimento)

https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Intelligenza%20Artificiale
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Agenti%20IA
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Workflow%20automation
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=OpenAI
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=AI%20Agent
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=liceo
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=scientifico-sa
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=tt-informatica

Struttura di un agente

Un agente IA è spesso descritto con il modello PEAS:

Esempio:

Tipi di agenti

Ci sono diversi tipi di agenti, a seconda della loro complessità:

1. Agenti reattivi semplici → reagiscono solo agli stimoli (es. “se vedo ostacolo → gira a sinistra”).

2. Agenti basati su modello → costruiscono una rappresentazione interna del mondo.

3. Agenti con obiettivi → pianificano azioni per raggiungere un risultato.

4. Agenti con apprendimento → migliorano le proprie decisioni grazie all’esperienza (machine learning).

Esempi nel mondo reale

Attività pratica n. 1

Costruiamo un mini-agente reattivo

Far sperimentare agli studenti la logica base di un agente reattivo, anche senza conoscenze avanzate di programmazione.

Attività: “Agente aspirapolvere virtuale”

L’agente si muove in una stanza (griglia) e pulisce le celle

sporche. Scriviamo un programma in Python

(aspirapolvere.py).

Passaggi:

Performance measure → come si misura il successo dell’agente

Environment → l’ambiente in cui opera

Actuators → i mezzi con cui agisce

Sensors → i mezzi con cui percepisce

Spotify → suggerisce musica in base ai gusti dell’utente.

Google Maps → calcola percorsi ottimali, adattandosi al traffico.

ChatGPT → un agente linguistico capace di comprendere e generare testo in modo coerente e informato.

1. Creiamo l’ambiente

import random

Ambiente: una griglia 5x5

stanza = [[random.choice(['pulito', 'sporco']) for _ in

range(5)] for _ in range(5)]

2. Definiamo la posizione iniziale dell’agente

posizione = [2, 2] # centro della griglia

3. Programmiamo l’agente reattivo

def agente(stanza, posizione):

 x, y = posizione

 if stanza[x][y] == 'sporco':

 print("Pulisco", (x,y))

 stanza[x][y] = 'pulito'

 else:

 print("Mi sposto verso", (x,y))

 movimento = random.choice(['su', 'giu', 'sinistra',

'destra'])

 if movimento == 'su' and x > 0: x -= 1

 elif movimento == 'giu' and x < 4: x += 1

 elif movimento == 'sinistra' and y > 0: y -= 1

 elif movimento == 'destra' and y < 4: y += 1

 return [x, y]

4. Facciamo agire l’agente più volte

for _ in range(10):

 posizione = agente(stanza, posizione)

Esempio di esecuzione

Stato della stanza:

['pulito', 'sporco', 'pulito', 'sporco', 'sporco']

['sporco', 'pulito', 'pulito', 'sporco', 'sporco']

['pulito', 'sporco', 'pulito', 'sporco', 'pulito']

['pulito', 'sporco', 'pulito', 'pulito', 'pulito']

['pulito', 'pulito', 'sporco', 'pulito', 'sporco']

Mi sposto verso (2, 2)

Pulisco (2, 3)

Mi sposto verso (2, 3)

Pulisco (1, 3)

Mi sposto verso (1, 3)

Pulisco (0, 3)

Mi sposto verso (0, 3)

Mi sposto verso (0, 3)

Mi sposto verso (0, 2)

Mi sposto verso (0, 3)

Stato della stanza:

['pulito', 'sporco', 'pulito', 'pulito', 'sporco']

['sporco', 'pulito', 'pulito', 'pulito', 'sporco']

['pulito', 'sporco', 'pulito', 'pulito', 'pulito']

['pulito', 'sporco', 'pulito', 'pulito', 'pulito']

['pulito', 'pulito', 'sporco', 'pulito', 'sporco']

Posizione attuale: [1, 3]

Discussione finale:

Ecco una versione minima che migliora il comportamento ricordando (in un set) le celle già pulite, così da evitare di tornarci se

possibile (aspirapolvere_memoria.py).

Quando la cella attuale è pulita invece di muoversi a caso, l’agente prova a muoversi verso una cella non ancora visitata tra i

vicini; solo se non esistono tenta un movimento casuale.

import random

Ambiente: una griglia 5x5

stanza = [[random.choice(['pulito', 'sporco']) for _ in range(5)] for _ in range(5)]

print("Stato iniziale:")

for riga in stanza:

 print(riga)

posizione = (2, 2) # centro della griglia

visitati = set() # memorizza le posizioni già pulite o almeno visitate

def vicini(x,y):

 """ritorna celle adiacenti nei limiti"""

 return [(nx,ny) for nx,ny in [(x-1,y),(x+1,y),(x,y-1),(x,y+1)]

 if 0 <= nx < 5 and 0 <= ny < 5]

def agente(stanza, pos):

 x,y = pos

 # marca come visitata

 visitati.add((x,y))

 # se sporca → pulisci

 if stanza[x][y] == 'sporco':

 stanza[x][y] = 'pulito'

 print("Pulisco", (x,y))

 return (x,y)

 # altrimenti cerca tra i vicini un posto non visitato

 candidati = [p for p in vicini(x,y) if p not in visitati]

 if candidati:

 nx,ny = random.choice(candidati)

 print("Mi sposto verso non-visitata", (nx,ny))

 return (nx,ny)

 # fallback: tutto visitato intorno → movimento casuale valido

 nx,ny = random.choice(vicini(x,y))

 print("Mi sposto random", (nx,ny))

 return (nx,ny)

L’agente prende decisioni autonome?

Che tipo di agente è (reattivo, basato su modello, con apprendimento)?

Come potremmo migliorarlo? (es. ricordare dove ha già pulito)

for _ in range(25):

 posizione = agente(stanza, posizione)

print("\nStato finale:")

for riga in stanza:

 print(riga)

print("Posizione finale:", posizione)

print("Celle visitate:", len(visitati))

Esempio di esecuzione

Stato iniziale:

['pulito', 'sporco', 'sporco', 'sporco', 'pulito']

['pulito', 'sporco', 'sporco', 'sporco', 'pulito']

['pulito', 'sporco', 'sporco', 'sporco', 'sporco']

['pulito', 'sporco', 'sporco', 'pulito', 'pulito']

['pulito', 'pulito', 'pulito', 'sporco', 'pulito']

Pulisco (2, 2)

Mi sposto verso non-visitata (2, 3)

Pulisco (2, 3)

Mi sposto verso non-visitata (1, 3)

Pulisco (1, 3)

Mi sposto verso non-visitata (0, 3)

Pulisco (0, 3)

Mi sposto verso non-visitata (0, 4)

Mi sposto verso non-visitata (1, 4)

Mi sposto verso non-visitata (2, 4)

Pulisco (2, 4)

Mi sposto verso non-visitata (3, 4)

Mi sposto verso non-visitata (3, 3)

Mi sposto verso non-visitata (3, 2)

Pulisco (3, 2)

Mi sposto verso non-visitata (4, 2)

Mi sposto verso non-visitata (4, 3)

Pulisco (4, 3)

Mi sposto verso non-visitata (4, 4)

Mi sposto random (4, 3)

Mi sposto random (4, 2)

Mi sposto verso non-visitata (4, 1)

Mi sposto verso non-visitata (4, 0)

Mi sposto verso non-visitata (3, 0)

Mi sposto verso non-visitata (2, 0)

Stato finale:

['pulito', 'sporco', 'sporco', 'pulito', 'pulito']

['pulito', 'sporco', 'sporco', 'pulito', 'pulito']

['pulito', 'sporco', 'pulito', 'pulito', 'pulito']

['pulito', 'sporco', 'pulito', 'pulito', 'pulito']

['pulito', 'pulito', 'pulito', 'pulito', 'pulito']

Posizione finale: (2, 0)

Celle visitate: 16

Attività pratica n. 2

Costruiamo un semplice agente triage con OpenAI

Creiamo un agente triage che riceve la richiesta dell’utente, la analizza e poi la ridireziona a uno dei tre agenti specializzati:

assistenza tecnica, assistenza vendite, gestione ordini.

Di seguito il codice completo in Python (triage_agent.py), usando l’API di OpenAI. L’idea è:

1. Il triage agent analizza il messaggio dell’utente.

2. Determina a quale agente specializzato inviare la richiesta.

3. Chiama il rispettivo agente (che può essere una funzione o un modello con prompt personalizzato).

import openai

Inserisci la tua chiave API

openai.api_key = "YOUR_OPENAI_API_KEY"

Funzione per chiamare un agente specifico

def call_agent(agent_name, user_message):

 if agent_name == "assistenza_tecnica":

 prompt = f"Sei un esperto di assistenza tecnica. Rispondi alla richiesta dell'utente:\n{user_message}"

 elif agent_name == "assistenza_vendite":

 prompt = f"Sei un esperto di vendite. Rispondi alla richiesta dell'utente:\n{user_message}"

 elif agent_name == "gestione_ordini":

 prompt = f"Sei un esperto nella gestione degli ordini. Rispondi alla richiesta dell'utente:\n{user_message}"

 else:

 return "Agente non trovato."

 response = openai.ChatCompletion.create(

 model="gpt-5-mini", # Puoi sostituire con il modello che preferisci

 messages=[{"role": "user", "content": prompt}],

 temperature=1

)

 return response.choices[0].message['content']

Funzione triage

def triage_agent(user_message):

 # Prompt per determinare il tipo di richiesta

 triage_prompt = f"""

 Sei un agente triage. L'utente ha scritto: "{user_message}".

 Decidi se la richiesta riguarda:

 1. Assistenza tecnica

 2. Assistenza vendite

 3. Gestione ordini

 Rispondi solo con una delle seguenti etichette:

 "assistenza_tecnica", "assistenza_vendite", "gestione_ordini"

 """

 response = openai.ChatCompletion.create(

 model="gpt-5-mini",

 messages=[{"role": "user", "content": triage_prompt}],

 temperature=1

)

 agent_label = response.choices[0].message['content'].strip()

 return agent_label

Funzione principale

def main():

 user_message = input("Scrivi la tua richiesta: ")

 agent_label = triage_agent(user_message)

 print(f"Triage: la richiesta verrà inviata a {agent_label.replace('_', ' ')}")

 answer = call_agent(agent_label, user_message)

 print(f"Risposta dell'agente:\n{answer}")

if __name__ == "__main__":

 main()

Per poter provare il programma è necessario installare la libreria openai per Python

pip install openai

Quindi creare una API key OpenAI accedendo con un account (o creandone uno gratuito) su https://platform.openai.com/

Per ottenere una nuova API_KEY cliccare su “Create new secret key”, dare un nome (es. “triage-agent”), quindi copiare subito la

chiave che appare (es. sk-abc123...)

È necessario anche avere del credito per l’utilizzo delle API di OpenAI (token). Andare

su https://platform.openai.com/settings/organization/billing/overview

Verificare che ci sia almeno una di queste:

Se non si ha credito, aggiungere: Da Billing → “Add payment method” → aggiungi carta. E’ sufficiente anche un credito di pochi

euro.

carta di credito attiva

credito gratuito disponibile

piano a pagamento attivo

Primo esempio di esecuzione: Assistenza tecnica (stampante)

Scrivi la tua richiesta: "Non mi funziona più la stampante che ho comprato un mese fa".

Triage: la richiesta verrà inviata a assistenza tecnica

Risposta dell'agente:

Posso aiutarti volentieri. Prima però ho bisogno di qualche informazione per darti indicazioni precise:

Domande rapide:

Nel frattempo prova questi controlli rapidi (seguendo l’ordine): ...

Commenti e valutazioni

Richiesta utente:

“Non mi funziona più la stampante che ho comprato un mese fa.”

Comportamento dell’agente:

Marca e modello della stampante?

Sistema operativo del computer (Windows 10/11, macOS, Linux)?

Come è collegata la stampante al computer? (USB, Wi‑Fi, Ethernet)

Cosa succede esattamente quando provi a stampare? (nessuna reazione, errore sul PC, luci lampeggianti, stampa

vuota, carta inceppata, messaggi sul pannello)

Hai già provato a spegnere e riaccendere la stampante e il computer?

Hai aggiornato driver/firmware o cambiato rete/PC prima che smettesse di funzionare?

Il triage funziona correttamente → la richiesta è classificata come assistenza tecnica.

La risposta dell’agente è molto strutturata: parte con un approccio empatico e chiede informazioni di base, poi

guida passo-passo nella diagnosi.

Punti di forza

Possibili miglioramenti

Secondo esempio di esecuzione: Gestione ordini (ritardo spedizione)

Scrivi la tua richiesta: "Non ho ancora ricevuto il libro che ho ordinato la settimana scorsa e che mi avete detto sarebbe

stato spedito entro 3 giorni."

Triage: la richiesta verrà inviata a gestione ordini

Risposta dell'agente:

Mi scuso per il disagio - capisco la frustrazione dato che vi era stata promessa la spedizione entro 3 giorni e non avete

ancora ricevuto il libro. Posso subito avviare un controllo e risolvere la situazione. Per favore fornitemi questi dati:

Nel frattempo, vi chiedo di verificare rapidamente:

Commenti e valutazioni

Richiesta utente:

“Non ho ancora ricevuto il libro che ho ordinato la settimana scorsa…”

Comportamento dell’agente:

Punti di forza

L’agente adotta una metodologia procedurale: controlli preliminari, prove progressive, verifica hardware/software,

garanzia.

Usa un tono professionale e collaborativo, adatto al supporto clienti.

Rilevante e coerente con la categoria scelta.

Linguaggio chiaro, ordinato, dettagliato.

Dimostra comprensione del dominio tecnico.

Potrebbe usare il toolcreate_ticket() per aprire una segnalazione automatica dopo aver raccolto i dati.

Numero d'ordine (se lo avete)

Nome e cognome usati per l'ordine

E‑mail o numero di telefono collegati all'ordine

Indirizzo di spedizione completo

Titolo del libro e data approssimativa dell'ordine

Il triage smista correttamente a gestione ordini.

L’agente risponde in modo empatico e organizzato: riconosce il disagio, raccoglie dati necessari (ordine, nome,

email, indirizzo), suggerisce verifiche autonome, e illustra le azioni che intraprenderà.

Simula un workflow reale di customer care (controllo, tracking, opzioni di rimborso o rispedizione).

Risposta ben contestualizzata.

Mostra empatia e competenza logistica.

Possibili miglioramenti

Proposta di attività da fare in classe

Laboratorio di triage e classificazione

Conclusioni e sviluppi

Negli esempi del triage di questo articolo, l’agente ha risposto molto bene, ma si limita a generare testo:

Per implementare i miglioramenti che abbiamo segnalato o per creare un agente reale utilizzato in un’azienda, serve un agente

“tool-enabled”, cioè in grado di:

Per ottenere tutto questo, l’agente non basta più da solo: serve una infrastruttura di automazione che permetta all’agente di

parlare con il mondo esterno. La creazione di agenti di intelligenza artificiale avanzati in passato richiedeva grandi competenze

di programmazione. Oggi non è più strettamente necessario perché esistono strumenti come n8n: si tratta di una piattaforma

open-source di automazione dei workflow. Si può pensare come un "coltellino svizzero" che collega: API, servizi cloud, email,

database, file, fogli Google. sistemi di ticketing. CRM, webhook (messaggio automatico inviato a una URL quando avviene un

evento) e funzioni personalizzate.

Con n8n si può costruire un flusso di lavoro visivo basato su nodi, dove ogni nodo esegue un compito. Per esempio:

In pratica n8n permette all’agente di AI di agirenel mondo reale.

Spiega con trasparenza i prossimi passi → ispira fiducia.

Se integrato conupdate_order() osend_email(), potrebbe generare una risposta automatica operativa (es.

simulare una mail di conferma al cliente).

Obiettivo: allenare gli studenti a capire come un agente “decide” a quale reparto assegnare una richiesta.

Attività: fornire 10 messaggi clienti diversi (tecnici, ordini, vendite) e far predire agli studenti a quale agente andranno → poi

verificare con l’agente.

Discussione: confrontare i criteri di decisione umani vs AI.

suggerisce cosa fare,

fornisce istruzioni,

non esegue operazioni reali (come creare ticket, inviare mail o cercare ordini).

leggere e interpretare dati reali (calendari, documenti, screenshot, note, email);

accedere a database interni o CRM;

prendere decisioni sulla base di regole aziendali;

avviare procedure automatiche (creazione report, invio email, registrazione attività, apertura workflow);

interagire con servizi esterni (Google Calendar, Outlook, ERP, sistemi di ticketing, e-commerce…).

un nodo riceve una richiesta dall’agente AI;

un altro aggiorna un database;

un altro invia una email al cliente;

un altro crea un evento sul calendario.

