Gli Agenti di Intelligenza Artificiale

di Massimo Vailati
27/01/2026

INTELLIGENZA ARTIFICIALE AGENTI IA WORKFLOW AUTOMATION OPENAI AI AGENT

LICEO, SCIENTIFICO S.A., TT INFORMATICA

Contenuto: introduzione al concetto di agente di Intelligenza Artificiale (IA), definito come un sistema in grado di
percepire, decidere, agire e valutare per raggiungere un obiettivo.

Attivita pratica: sperimentare la logica base di un agente reattivo, creare un agente complesso che analizza la richiesta di
un utente e la ridireziona all'agente specializzato corretto.

Negli ultimi anni, 'Intelligenza Artificiale (IA) & uscita dai laboratori di ricerca per entrare nella nostra vita quotidiana: dagli
assistenti vocali come Siri e Alexa ai chatbot, fino alle auto a guida autonoma.
Ma cosa rende possibile tutto questo? Una delle risposte chiave ¢ il concetto di agente intelligente.

Cos’é un agente IA

Un agente di intelligenza artificiale & un sistema in grado di:

Percepire l'ambiente in cui si trova (attraverso sensori, dati o input);
Decidere cosa fare, elaborando Le informazioni ricevute;
Agire sull'ambiente per raggiungere un obiettivo tramite attuatori o output digitali.

Valutare i risultati eventualmente adattando le sue decisioni future (se dotato di apprendimento)

In altre parole, un agente € un “attore” che osserva, ragiona e agisce in modo autonomo o semi-autonomo.

https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Intelligenza%20Artificiale
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Agenti%20IA
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Workflow%20automation
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=OpenAI
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=AI%20Agent
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=liceo
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=scientifico-sa
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=tt-informatica

Struttura di un agente

Un agente IA é spesso descritto con il modello PEAS:

Performance measure - come si misura il successo dell'agente
Environment - l'ambiente in cui opera
Actuators - i mezzi con cui agisce

Sensors - i mezzi con cui percepisce

Esempio:

Tipo di Agente Ambiente Sensori Attuatori Obiettivo
Robot Sensori di distanza e ||Motori e o .

. Casa Pulire il pavimento
aspirapolvere polvere spazzole
Assistente vocale Conversazione Microfono Yoce' Rispondere alle
umana sintetizzata domande

Chatbqt Studente Input testuale RlSpOS.t © élutare :
educativo testuali I’apprendimento

Tipi di agenti

Ci sono diversi tipi di agenti, a seconda della loro complessita:

1. Agenti reattivi semplici > reagiscono solo agli stimoli (es. “se vedo ostacolo - gira a sinistra”).
2. Agenti basati su modello » costruiscono una rappresentazione interna del mondo.

3. Agenti con obiettivi > pianificano azioni per raggiungere un risultato.

4. Agenti con apprendimento > migliorano le proprie decisioni grazie all'esperienza (machine learning).

Esempi nel mondo reale

Spotify - suggerisce musica in base ai gusti dell'utente.
Google Maps > calcola percorsi ottimali, adattandosi al traffico.

ChatGPT - un agente linguistico capace di comprendere e generare testo in modo coerente e informato.

Attivita pratican. 1

Costruiamo un mini-agente reattivo

Far sperimentare agli studenti la logica base di un agente reattivo, anche senza conoscenze avanzate di programmazione.

Attivita: “Agente aspirapolvere virtuale”
L'agente si muove in una stanza (griglia) e pulisce le celle
sporche. Scriviamo un programma in Python

(aspirapolvere.py).

Passaggi:

1. Creiamo l'ambiente
import random

Ambiente: una griglia 5x5
stanza = [[random.choice(['pulito’, 'sporco']) for _in
range(5)] for _in range(5)]

2. Definiamo la posizione iniziale dell’agente
posizione = [2, 2] # centro della griglia
3. Programmiamo l'agente reattivo

def agente(stanza, posizione):
X, y = posizione
if stanzalx|ly] == 'sporco":
print("Pulisco”, (x,y))
stanza[x][y] = 'pulito’
else:
print("Mi sposto verso", (x,y))
movimento = random.choice(['su’, 'giu’, 'sinistra’,
'destra'])
if movimento =='su'and x > @: x -= 1
elif movimento =="'giu'and x < 4: x +=1
elif movimento == 'sinistra'andy > @:y -=
elif movimento == 'destra’'andy < 4:y +=1
return [x, y]

4. Facciamo agire l'agente piu volte

for _in range(10):
posizione = agente(stanza, posizione)

Esempio di esecuzione

Stato della stanza:

['pulito’, 'sporco’, 'pulito’, 'sporco’, 'sporco']
['sporco’, 'pulito’, 'pulito’, 'sporco’, 'sporco']
['pulito’, 'sporco’, 'pulito’, 'sporco’, 'pulito’]
['pulito’, 'sporco’, 'pulito’, 'pulito’, 'pulito']
['pulito’, 'pulito’, 'sporco’, 'pulito’, 'sporco’]
Mi sposto verso (2, 2)

Pulisco (2, 3)

Mi sposto verso (2, 3)

Pulisco (1, 3)

Mi sposto verso (1, 3)

Pulisco (9, 3)

Mi sposto verso (@, 3)

Mi sposto verso (@, 3)

Mi sposto verso (Q, 2)

Mi sposto verso (Q, 3)

Stato della stanza:

['pulito’, 'sporco’, 'pulito’, 'pulito’, 'sporco’]
['sporco’, 'pulito’, 'pulito’, 'pulito’, 'sporco’]
['pulito’, 'sporco’, 'pulito’, 'pulito’, 'pulito']
['pulito’, 'sporco’, 'pulito’, 'pulito’, 'pulito']

['pulito’, 'pulito’, 'sporco’, 'pulito’, 'sporco']
Posizione attuale: [1, 3]

Discussione finale:

L'agente prende decisioni autonome?
Che tipo di agente & (reattivo, basato su modello, con apprendimento)?

Come potremmo migliorarlo? (es. ricordare dove ha gia pulito)

Ecco una versione minima che migliora il comportamento ricordando (in un set) le celle gia pulite, cosi da evitare di tornarci se
possibile (aspirapolvere_memoria.py).

Quando la cella attuale & pulita invece di muoversi a caso, l'agente prova a muoversi verso una cella non ancora visitata tra i
vicini; solo se non esistono tenta un movimento casuale.

import random

Ambiente: una griglia 5x5
stanza = [[random.choice(['pulito’, 'sporco’]) for _ in range(5)] for _ in range(5)]

print("Stato iniziale:")
for riga in stanza:
print(riga)

posizione = (2,2) # centro della griglia
visitati = set() # memorizza le posizioni gia pulite o almeno visitate

def vicini(x,y):
"""ritorna celle adiacenti nei limiti
return [(nx,ny) for nx,ny in [(x-1,y),(x+1,y),(x,y-1),(x,y+1)]

if@<=nx<5and@ <=ny < 5]

def agente(stanza, pos):
X,y = pos

marca come visitata
visitati.add((x,y))

se sporca - pulisci

if stanzalx][y] == 'sporco":
stanzalx][y] = 'pulito’
print("Pulisco”, (x,y))
return (x,y)

altrimenti cerca tra i vicini un posto non visitato
candidati = [p for p in vicini(x,y) if p not in visitati]
if candidati:

nx,ny = random.choice(candidati)

print("Mi sposto verso non-visitata", (nx,ny))

return (nx,ny)

fallback: tutto visitato intorno -+ movimento casuale valido
nx,ny = random.choice(vicini(x,y))

print("Mi sposto random”, (nx,ny))

return (nx,ny)

for _in range(25):
posizione = agente(stanza, posizione)

print("\nStato finale:")
forriga in stanza:
print(riga)
print("Posizione finale:", posizione)
print("Celle visitate:", len(visitati))

Esempio di esecuzione

Stato iniziale:

['pulito’, 'sporco!, 'sporco’, 'sporco’, 'pulito']
['pulito’, 'sporco’, 'sporco’, 'sporco’, 'pulito']
['pulito’, 'sporco!, 'sporco’, 'sporco’, 'sporco']
['pulito’, 'sporco!, 'sporco’, 'pulito’, 'pulito’]
['pulito’, 'pulito’, 'pulito’, 'sporco’, 'pulito']
Pulisco (2, 2)

Mi sposto verso non-visitata (2, 3)
Pulisco (2, 3)

Mi sposto verso non-visitata (1, 3)
Pulisco (1, 3)

Mi sposto verso non-visitata (9, 3)
Pulisco (9, 3)

Mi sposto verso non-visitata (@, 4)

Mi sposto verso non-visitata (1, 4)

Mi sposto verso non-visitata (2, 4)
Pulisco (2, 4)

Mi sposto verso non-visitata (3, 4)

Mi sposto verso non-visitata (3, 3)

Mi sposto verso non-visitata (3, 2)
Pulisco (3, 2)

Mi sposto verso non-visitata (4, 2)

Mi sposto verso non-visitata (4, 3)
Pulisco (4, 3)

Mi sposto verso non-visitata (4, 4)

Mi sposto random (4, 3)

Mi sposto random (4, 2)

Mi sposto verso non-visitata (4, 1)

Mi sposto verso non-visitata (4, @)

Mi sposto verso non-visitata (3, @)

Mi sposto verso non-visitata (2, @)

Stato finale:

['pulito’, 'sporco’, 'sporco’, 'pulito’, 'pulito’]
['pulito’, 'sporco’, 'sporco’, 'pulito’, 'pulito’]
['pulito’, 'sporco’, 'pulito’, 'pulito’, 'pulito']
['pulito’, 'sporco’, 'pulito’, 'pulito’, 'pulito']
['pulito’, 'pulite’, 'pulito’, 'pulito’, 'pulito]
Posizione finale: (2, @)

Celle visitate: 16

Attivita pratican. 2

Costruiamo un semplice agente triage con OpenAl

Creiamo un agente triage che riceve la richiesta dell’'utente, la analizza e poi la ridireziona a uno dei tre agenti specializzati:
assistenza tecnica, assistenza vendite, gestione ordini.

Di seguito il codice completo in Python (triage_agent.py), usando U'API di OpenAl L'idea é&:

1. Il triage agent analizza il messaggio dell'utente.
2. Determina a quale agente specializzato inviare la richiesta.
3. Chiamaiil rispettivo agente (che pud essere una funzione o un modello con prompt personalizzato).

import openai

Inserisci la tua chiave API
openai.api_key = "YOUR_OPENAI_API_KEY"

Funzione per chiamare un agente specifico
def call_agent(agent_name, user_message):
if agent_name == "assistenza_tecnica":
prompt = f'Sei un esperto di assistenza tecnica. Rispondi alla richiesta dell'utente:\n{user_message}"
elif agent_name == "assistenza_vendite":
prompt = f'Sei un esperto di vendite. Rispondi alla richiesta dell'utente:\n{user_message}"
elif agent_name == "gestione_ordini":
prompt = f'Sei un esperto nella gestione degli ordini. Rispondi alla richiesta dell'utente:\n{user_message}"
else:
return "Agente non trovato."

response = openai.ChatCompletion.create(
model="gpt-5-mini", # Puoi sostituire con il modello che preferisci
messages=|[{"role": "user", "content": prompt}],
temperature=1

)

return response.choices[@]. message['content']

Funzione triage

def triage_agent(user_message):
Prompt per determinare il tipo di richiesta
triage_prompt = f
Sei un agente triage. L'utente ha scritto: "{user_message}".
Decidi se la richiesta riguarda:

1. Assistenza tecnica
2. Assistenza vendite
3. Gestione ordini

Rispondi solo con una delle seguenti etichette:

"assistenza_tecnica", "assistenza_vendite", "gestione_ordini"
response = openai.ChatCompletion.create(
model="gpt-5-mini",
messages=[{"role": "user", "content": triage_prompt}|,
temperature=1
)
agent_label = response.choices[@].message['content'].strip()
return agent_label

Funzione principale
def main():
user_message = input("Scrivi la tua richiesta: ")
agent_label = triage_agent(user_message)
print(f"Triage: la richiesta verra inviata a {agent_label.replace('_", ')}")

answer = call_agent(agent_label, user_message)
print(f'Risposta dell'agente:\n{answer}")

if __name__=="__main__"
main()

Per poter provare il programma € necessario installare la libreria openai per Python
pip install openai
Quindi creare una API key OpenAl accedendo con un account (o creandone uno gratuito) su https://platform.openai.com/

Per ottenere una nuova API_KEY cliccare su “Create new secret key”, dare un nome (es. “triage-agent”), quindi copiare subito la
chiave che appare (es. sk-abc123...)

o Personal C / Default project < Dashboard Docs API @ ﬂ
Settings API keys + Create new secret key
Your profile

o You have permission to view and manage all API keys in this organization.
Organization

General Do not share your API key with others or expose it in the browser or other client-side code. To protect your
account's security, OpenAl may automatically disable any APl key that has leaked publicly.

APl keys)
View usage per APl key on the Usage page.

Admin keys
NAME SECRET KEY PROJECT ACCESS CREATED BY PERMISSIONS

People

Projects Agent sk—...XYWA Default project NN Al C W

E necessario anche avere del credito per l'utilizzo delle API di OpenAl (token). Andare
su https://platform.openai.com/settings/organization/billing/overview

Verificare che ci sia almeno una di queste:

carta di credito attiva
credito gratuito disponibile

piano a pagamento attivo

Se non si ha credito, aggiungere: Da Billing » “Add payment method” + aggiungi carta. E’ sufficiente anche un credito di pochi
euro.

o Personal £ / Default project < Dashboard Docs API (_33

Settings

Billing

Your profile
Overview Payment methods Billing history Credit grants Preferences

Organization

General Pay as you go
APl keys Credit balance ©®
Admin keys $4.99
People
Add to credit balance Cancel plan
Projects
Billing Auto recharge is off
T '6) When you.r credit balance reac:.hes $0, your API reque.sts will Enable autorecharge
stop working. Enable automatic recharge to automatically
Usage keep your credit balance topped up.

Primo esempio di esecuzione: Assistenza tecnica (stampante)
Scrivi la tua richiesta: "Non mi funziona piu la stampante che ho comprato un mese fa".
Triage: la richiesta verra inviata a assistenza tecnica

Risposta dell'agente:
Posso aiutarti volentieri. Prima perd ho bisogno di qualche informazione per darti indicazioni precise:

Domande rapide:

Marca e modello della stampante?
Sistema operativo del computer (Windows 10/11, macOS, Linux)?
Come é collegata la stampante al computer? (USB, Wi-Fi, Ethernet)

Cosa succede esattamente quando provi a stampare? (nessuna reazione, errore sul PC, luci lampeggianti, stampa
vuota, carta inceppata, messaggi sul pannello)

Hai gia provato a spegnere e riaccendere la stampante e il computer?

Hai aggiornato driver/firmware o cambiato rete/PC prima che smettesse di funzionare?

Nel frattempo prova questi controlli rapidi (seguendo l'ordine): ...
Commenti e valutazioni

Richiesta utente:

“Non mi funziona piu la stampante che ho comprato un mese fa.”

Comportamento dell’agente:

Il triage funziona correttamente - la richiesta € classificata come assistenza tecnica.

La risposta dell'agente & molto strutturata: parte con un approccio empatico e chiede informazioni di base, poi
guida passo-passo nella diagnosi.

L'agente adotta una metodologia procedurale: controlli preliminari, prove progressive, verifica hardware/software,
garanzia.

Usa un tono professionale e collaborativo, adatto al supporto clienti.

Punti di forza

Rilevante e coerente con la categoria scelta.
Linguaggio chiaro, ordinato, dettagliato.

Dimostra comprensione del dominio tecnico.

Possibili miglioramenti

Potrebbe usare il toolcreate ticket() per aprire una segnalazione automatica dopo aver raccolto i dati.

Secondo esempio di esecuzione: Gestione ordini (ritardo spedizione)

Scrivi la tua richiesta: "Non ho ancora ricevuto il libro che ho ordinato la settimana scorsa e che mi avete detto sarebbe
stato spedito entro 3 giorni."

Triage: la richiesta verra inviata a gestione ordini
Risposta dell'agente:

Mi scuso per il disagio - capisco la frustrazione dato che vi era stata promessa la spedizione entro 3 giorni e non avete
ancora ricevuto il libro. Posso subito avviare un controllo e risolvere la situazione. Per favore fornitemi questi dati:

Numero d'ordine (se lo avete)

Nome e cognome usati per l'ordine

E-mail o numero di telefono collegati all'ordine
Indirizzo di spedizione completo

Titolo del libro e data approssimativa dell'ordine

Nel frattempo, vi chiedo di verificare rapidamente: ...

Commenti e valutazioni
Richiesta utente:
“Non ho ancora ricevuto il libro che ho ordinato la settimana scorsa...”

Comportamento dell’agente:

Il triage smista correttamente a gestione ordini.

L'agente risponde in modo empatico e organizzato: riconosce il disagio, raccoglie dati necessari (ordine, nome,
email, indirizzo), suggerisce verifiche autonome, e illustra le azioni che intraprendera.

Simula un workflow reale di customer care (controllo, tracking, opzioni di rimborso o rispedizione).

Punti di forza

Risposta ben contestualizzata.

Mostra empatia e competenza logistica.

Spiega con trasparenza i prossimi passi - ispira fiducia.
Possibili miglioramenti

Se integrato conupdate_order() osend email(), potrebbe generare una risposta automatica operativa (es.
simulare una mail di conferma al cliente).

Proposta di attivita da fare in classe

Laboratorio di triage e classificazione

Obiettivo: allenare gli studenti a capire come un agente “decide” a quale reparto assegnare una richiesta.

Attivita: fornire 10 messaggi clienti diversi (tecnici, ordini, vendite) e far predire agli studenti a quale agente andranno - poi
verificare con l'agente.

Discussione: confrontare i criteri di decisione umani vs AL

Conclusioni e sviluppi

Negli esempi del triage di questo articolo, l'agente ha risposto molto bene, ma si limita a generare testo:

suggerisce cosa fare,
fornisce istruzioni,

non esegue operazioni reali (come creare ticket, inviare mail o cercare ordini).

Per implementare i miglioramenti che abbiamo segnalato o per creare un agente reale utilizzato in un‘azienda, serve un agente
“tool-enabled”, cioé in grado di:

leggere e interpretare dati reali (calendari, documenti, screenshot, note, email);

accedere a database interni o CRM;

prendere decisioni sulla base di regole aziendali;

avviare procedure automatiche (creazione report, invio email, registrazione attivita, apertura workflow);

interagire con servizi esterni (Google Calendar, Outlook, ERP, sistemi di ticketing, e-commerce...).

Per ottenere tutto questo, l'agente non basta pil da solo: serve una infrastruttura di automazione che permetta all’agente di
parlare con il mondo esterno. La creazione di agenti di intelligenza artificiale avanzati in passato richiedeva grandi competenze
di programmazione. Oggi non €& piu strettamente necessario perché esistono strumenti come n8n: si tratta di una piattaforma
open-source di automazione dei workflow. Si pud pensare come un “coltellino svizzero" che collega: API, servizi cloud, email,
database, file, fogli Google. sistemi di ticketing. CRM, webhook (messaggio automatico inviato a una URL quando avviene un
evento) e funzioni personalizzate.

Con n8n si puo costruire un flusso di lavoro visivo basato su nodi, dove ogni nodo esegue un compito. Per esempio:

un nodo riceve una richiesta dall'agente AI;
un altro aggiorna un database;
un altro invia una email al cliente;

un altro crea un evento sul calendario.

In pratica n8n permette all'agente di AI di agirenel mondo reale.

@] il |a| Al Agent

Schedule Trigger

(31]

Calendar Scheda SendGmail
OpenAl Chat Model Simple Memory

