
Automi a stati finiti (ASF o FSM)
di Massimo Vailati
06/02/2026

PYTHON AUTOMI VIDEOGIOCHI SIMULAZIONE STATI COMPORTAMENTI

LICEO, SCIENTIFICO S.A., TT INFORMATICA

Contenuto: introduzione agli automi a stati finiti come modelli matematici fondamentali per rappresentare

comportamenti sequenziali, validare input e modellare sistemi reattivi, mostrando la loro utilità sia nella didattica che

nella progettazione di software e giochi.

Attività pratica: la realizzazione di un automa per validare numeri interi positivi, la simulazione degli stati di un

personaggio in un videogioco, e la creazione di un prototipo di videogioco con controllo del personaggio.

Nel mondo dell’informatica teorica, i linguaggi formali e gli automi a stati finiti (Finite State Machines, FSM) rappresentano

strumenti fondamentali per comprendere come funzionano la computazione, la validazione dei dati e persino alcune logiche di

gioco. Anche se spesso vengono percepiti come concetti astratti, possono rivelarsi estremamente pratici nella didattica,

soprattutto se tradotti in attività laboratoriali concrete.

Gli automi a stati finiti (ASF) sono modelli matematici usati per rappresentare comportamenti sequenziali. Il loro scopo è

descrivere un sistema che, in ogni momento, si trova esattamente in uno di un numero finito di stati possibili. Gli ASM sono

capaci di:

Rappresentare comportamenti sequenziali (es. stati di un personaggio di gioco: “fermo”, “cammina”, “salta”…)

Validare stringhe di input (es. controllare se un identificatore è valido, o se una password rispetta un formato)

Modellare sistemi reattivi (es. menù interattivi, sistemi di controllo, semafori)

Semplificare la progettazione e il debugging: uno stato alla volta, nessuna ambiguità

https://area-informatica-ss2g.hubscuola.it/il-blog/?author=Massimo%20Vailati
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Python
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Automi
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Videogiochi
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Simulazione
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Stati
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Comportamenti
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=liceo
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=scientifico-sa
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=tt-informatica

Un automa a stati finiti è composto da:

Una possibile rappresentazione grafica è un diagramma o grafo orientato: ciascun nodo è uno stato, e le frecce etichettate

indicano le transizioni.

In questo esempio l’ASF ha 3 stati: Stato 1, Stato 2 e Stato 3 (stato finale). La Transizione A porta l’ASF dallo Stato 1 allo Stato 2,

la Transizione B porta l’ASF dallo Stato 2 allo Stato1 e la Transizione C porta l’ASF dallo Stato 2 allo Stato 3.

Esempi pratici di ASF

1 - Il Semaforo Stradale

Questo è l'esempio classico di un sistema reattivo modellato da un ASF.

In questo modello, lo stato attuale determina il prossimo stato, garantendo un ciclo di funzionamento coerente e non ambiguo.

un insieme finito di stati

- Tutte le possibili condizioni in cui il sistema si può trovare

uno stato iniziale

- Lo stato in cui il sistema si trova all’inizio.

uno o più stati finali (a seconda del contesto)

- Sono opzionali e indicano un risultato valido o completato.

un alfabeto di simboli in ingresso

- L’insieme di tutti i possibili eventi o simboli che causano un cambiamento

una funzione di transizione

- Regola che indica come cambiare stato in base all’input

Stati: Rosso, Verde, Giallo.

Input (Alfabeto): Un segnale di Tempo Scaduto (il timer interno).

Funzione di Transizione:

DA Rosso + Input Tempo Scaduto A Verde

DA Verde + Input Tempo Scaduto A Giallo

DA Giallo + Input Tempo Scaduto A Rosso

2 – Il distributore automatico

Un distributore automatico è un sistema che deve ricordare lo stato corrente dei soldi inseriti per determinare le azioni

successive.

Stati

Gli stati rappresentano l'ammontare totale di credito inserito e definiscono ciò che l'utente può fare:

Alfabeto di Input

Gli input sono gli eventi che provocano le transizioni:

Funzione di Transizione: Regole di Funzionamento

Le transizioni determinano come si muove il sistema tra gli stati.

S0 (Iniziale): Nessun Credito (0€). La macchina è in attesa di monete.

S1 Credito Parziale (ad esempio, 0.50€). Non sufficiente per il prodotto.

S2 (Finale): Credito Sufficiente (ad esempio, 1.00€ o più). Il prodotto può essere erogato

M050: Inserimento di una moneta da 0.50€.

M100: Inserimento di una moneta da 1.00€.

B: Pressione del Pulsante di Acquisto (se il credito è sufficiente).

R: Pressione del Pulsante di Ritiro Resto.

Rappresentazione mediante grafo

Attività pratica n.1

Validazione dell’input

La validazione dell’input è uno dei contesti più efficaci per far comprendere agli studenti il potere dei linguaggi formali e degli

automi a stati finiti. Molti programmatori usano subito le espressioni regolari per controllare il formato di un dato, ma spesso

non capiscono davvero perché funzionano o che cosa rappresentano.

Usare una FSM permette invece di far emergere:

Implementiamo un automa a stati finiti che riconosca numeri interi positivi, ovvero stringhe costituite da una o più cifre (0–9)

con:

Esempi accettati:"0","5","123","999999"

Esempi rifiutati:""," 123","12 34","-5","12.5","3a7"

Progetto dell’automa

Stati

Transizioni

Grafo

la logica formale dietro la validazione

il concetto di riconoscimento di linguaggi

l’utilità pratica degli automi nella progettazione di software robusto

nessuno spazio

nessuna lettera

nessun simbolo

almeno una cifra

S – stato iniziale

Attende la prima cifra

D – “dentro numero”

Dopo aver letto almeno una cifra

X – stato di errore

Se arriva un carattere non valido

D è stato accettante

Codice Python

Ecco una versione della FSM completamente implementata (input.py)

Insieme degli stati dell’automa:

S = stato iniziale

D = stato "dentro numero" (accettante)

X = stato di errore

states = {"S", "D", "X"}

Stato iniziale

start = "S"

Stati accettanti (qui solo D)

accepting = {"D"}

def get_symbol(c):

 # Restituisce il tipo di simbolo letto.

 # L'automa non lavora direttamente sui caratteri,

 # ma su categorie astratte: 'digit' o 'other'.

 return "digit" if c.isdigit() else "other"

Funzione di transizione:

(stato_corrente, simbolo) → nuovo_stato

transitions = {

 ("S", "digit"): "D", # La prima cifra rende il numero valido

 ("S", "other"): "X", # Se già il primo carattere non è cifra → errore

 ("D", "digit"): "D", # Altre cifre mantengono la validità

 ("D", "other"): "X", # Qualunque carattere non numerico dopo cifre → errore

 ("X", "digit"): "X", # Una volta in errore, si rimane in errore

 ("X", "other"): "X",

}

def run_fsm(s):

 # Esegue l'automa sulla stringa s.

 # Ritorna True se s viene riconosciuta come numero intero positivo.

 # Lo stato corrente parte sempre dallo stato iniziale

 state = start

 # Analizza la stringa carattere per carattere

 for c in s:

 # Converte il carattere in un 'simbolo' astratto

 symbol = get_symbol(c)

 # Applica la transizione definita nell'automa

 state = transitions[(state, symbol)]

 # La stringa è accettata solo se lo stato finale è uno stato accettante

 return state in accepting

TEST DI VALIDAZIONE

print(run_fsm("12345")) # True: tutte cifre

print(run_fsm("12a45")) # False: contiene una lettera

print(run_fsm("")) # False: stringa vuota → rimane in S (non accettante)

print(run_fsm("0")) # True: singola cifra è valida

print(run_fsm(" 123")) # False: spazio iniziale → errore

print(run_fsm("42 ")) # False: spazio finale → errore

Attività pratica n.2

Controllare il personaggio di un videogioco

Immaginiamo un semplice videogioco 2D di tipo platform. Il personaggio può:

Ogni stato definisce cosa il personaggio sta facendo e quali transizioni sono possibili.

Stati possibili e logica

1. Idle

Il personaggio non sta compiendo azioni.

Transizioni:

2. Walk

Il personaggio si muove orizzontalmente.

Transizioni:

3. Jump

Il personaggio è in aria.

Transizioni:

stare fermo (Idle)

camminare (Walk)

saltare (Jump)

subire un danno (Hit)

essere KO (KO)

Idle → Walk (se viene premuto un tasto di movimento)

Idle → Jump (se si preme il tasto “salta”)

Idle → Hit (se si subisce un attacco)

Walk → Idle (se si rilasciano i tasti di movimento)

Walk → Jump (se si preme “salta”)

Walk → Hit (se colpito)

4. Hit

Il personaggio è colpito e riproduce un’animazione di danno.

Transizioni:

5. KO

Il personaggio è sconfitto. Stato finale.

Transizioni:

Grafo

Codice Python

Il codice seguente (character.py) propone una struttura semplice da far implementare agli studenti.

Non è un motore di gioco completo, ma una base concettuale.

class CharacterFSM:

 def __init__(self):

 self.state = "Idle"

 self.hp = 3

 def handle_event(self, event):

 print(f"Stato attuale: {self.state}. Evento: {event}")

 if self.state == "Idle":

 if event == "move":

 self.state = "Walk"

 elif event == "jump":

 self.state = "Jump"

 elif event == "hit":

 self.state = "Hit"

Jump → Idle (quando atterra)

Jump → Hit (se viene colpito in aria)

Hit → Idle (se resta HealthPoints > 0 e finisce l’animazione)

Hit → KO (se HealthPoints <= 0)

KO → (nessuna)

 elif self.state == "Walk":

 if event == "stop":

 self.state = "Idle"

 elif event == "jump":

 self.state = "Jump"

 elif event == "hit":

 self.state = "Hit"

 elif self.state == "Jump":

 if event == "land":

 self.state = "Idle"

 elif event == "hit":

 self.state = "Hit"

 elif self.state == "Hit":

 self.hp -= 1

 if self.hp <= 0:

 self.state = "KO"

 else:

 self.state = "Idle"

 print(f"Nuovo stato: {self.state}\n")

char = CharacterFSM()

char.handle_event("move")

char.handle_event("jump")

char.handle_event("land")

char.handle_event("hit")

char.handle_event("hit")

char.handle_event("hit")

Esecuzione

Stato attuale: Idle. Evento: move

Nuovo stato: Walk

Stato attuale: Walk. Evento: jump

Nuovo stato: Jump

Stato attuale: Jump. Evento: land

Nuovo stato: Idle

Stato attuale: Idle. Evento: hit

Nuovo stato: Hit

Stato attuale: Hit. Evento: hit

Nuovo stato: Idle

Stato attuale: Idle. Evento: hit

Nuovo stato: Hit

Attività pratica n.3

Prototipo di videogioco con controllo del personaggio

Il codice seguente (gameplay.py) propone la realizzazione di un prototipo di videogioco con personaggio controllato dallo

stesso FSM considerato nell’attività pratica numero 2. Per l’esecuzione è necessario installare pygame (pip install

pygame).

Comportamenti implementati:

Il programma visualizza un personaggio come un semplice rettangolo che cambia colore in base allo stato.

Il log della console mostra tutte le transizioni.

Per rendere dinamico il gioco è stato aggiunto

Stati: Idle, Walk, Jump, Hit, KO

Tasti:

- Frecce sinistra/destra → movimento

- Barra spaziatrice → salto

Gravità e atterraggio simulati

Colpo che riduce HP e può mandare KO

Idle (grigio) → fermo

Walk (blu) → si muove

Jump (giallo) → salta

Hit (rosso) → colpito

KO (rosso scuro) → sconfitto

Un nemico rappresentato da un quadrato rosso scuro che si muove avanti e indietro.

Una funzione di collisione tra personaggio ed enemy.

Quando c’è collisione → la FSM del personaggio riceve l’evento "hit".

Codice Python

import pygame

import sys

FSM DEL PERSONAGGIO

class CharacterFSM:

 def __init__(self):

 # Stato iniziale del personaggio

 self.state = "Idle"

 # Punti vita

 self.hp = 10

 # Velocità verticale usata per la fisica del salto

 self.y_velocity = 0

 # Flag che indica se il personaggio è a terra (può saltare)

 self.is_on_ground = True

 def handle_event(self, event):

 # Stampa evento e stato corrente (utile per debug)

 print(f"EVENTO: {event}, Stato: {self.state}")

 # LOGICA DEGLI STATI: transizioni basate sull'evento ricevuto

 if self.state == "Idle":

 if event == "move":

 # Quando ci si muove da fermi -> camminare

 self.state = "Walk"

 elif event == "jump":

 # Inizio salto

 self.state = "Jump"

 elif event == "hit":

 # Subito dopo essere colpiti

 self.state = "Hit"

 elif self.state == "Walk":

 if event == "stop":

 # Stop movimento -> tornare fermi

 self.state = "Idle"

 elif event == "jump":

 # Saltare anche mentre si cammina

 self.state = "Jump"

 elif event == "hit":

 # Colpito mentre cammina

 self.state = "Hit"

 elif self.state == "Jump":

 if event == "land":

 # Atterraggio -> tornare a Idle

 self.state = "Idle"

 elif event == "hit":

 # Colpito in aria

 self.state = "Hit"

 elif self.state == "Hit":

 # Quando si entra nello stato Hit si decrementano gli HP

 self.hp -= 1

 if self.hp <= 0:

 # Se gli HP finiscono -> KO permanente

 self.state = "KO"

 else:

 # Altrimenti si torna a Idle dopo l'animazione di hit

 self.state = "Idle"

 # Stampa il nuovo stato (utile per debug)

 print(f" → Nuovo stato: {self.state}")

SETUP DI GIOCO

pygame.init()

screen = pygame.display.set_mode((800, 600))

clock = pygame.time.Clock()

Posizione iniziale del personaggio (x, y)

x = 400

y = 500

Velocità orizzontale del personaggio

speed = 5

Accelerazione dovuta alla gravità usata per il salto

gravity = 0.8

Istanza della macchina a stati del personaggio

fsm = CharacterFSM()

NEMICO

Posizione del nemico

enemy_x = 200

enemy_y = 500

Velocità di movimento del nemico e direzione (1 destra, -1 sinistra)

enemy_speed = 3

enemy_direction = 1 # 1 = destra, -1 = sinistra

LOOP PRINCIPALE

while True:

 # Lettura input tastiera

 keys = pygame.key.get_pressed()

 moved = False # flag per capire se il personaggio si è mosso orizzontalmente

 # Gestione eventi di sistema (es. chiusura finestra)

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.exit()

 # --- MOVIMENTO ORIZZONTALE ---

 if keys[pygame.K_LEFT]:

 x -= speed

 moved = True

 if keys[pygame.K_RIGHT]:

 x += speed

 moved = True

 # Transizioni tra Idle <-> Walk in base al movimento orizzontale

 if moved and fsm.state == "Idle":

 fsm.handle_event("move")

 if not moved and fsm.state == "Walk":

 fsm.handle_event("stop")

 # --- SALTO ---

 # Se premi SPACE e sei a terra, inizia il salto

 if keys[pygame.K_SPACE] and fsm.is_on_ground:

 fsm.is_on_ground = False

 # Impulso iniziale verso l'alto (valore negativo per y decresce verso l'alto nello schermo)

 fsm.y_velocity = -15

 fsm.handle_event("jump")

 # ----------------------------

 # FISICA DEL SALTO

 # ----------------------------

 if not fsm.is_on_ground:

 # Aggiorno posizione verticale in base alla velocità verticale

 y += fsm.y_velocity

 # Applico gravità incrementando la velocità verso il basso

 fsm.y_velocity += gravity

 # Rilevo atterraggio sul "terreno" (y = 500)

 if y >= 500:

 y = 500

 fsm.is_on_ground = True

 fsm.y_velocity = 0

 # Al ritorno a terra, se ero in Jump genero evento land

 if fsm.state == "Jump":

 fsm.handle_event("land")

 # ----------------------------

 # MOVIMENTO DEL NEMICO

 # ----------------------------

 # Sposta il nemico e inverte direzione ai limiti

 enemy_x += enemy_speed * enemy_direction

 if enemy_x <= 100 or enemy_x >= 650: # limiti di pattuglia del nemico

 enemy_direction *= -1

 # ----------------------------

 # COLLISIONE PERSONAGGIO / NEMICO

 # ----------------------------

 # Rette di collisione (possono essere sostituite da hitbox più precise)

 player_rect = pygame.Rect(x, y, 50, 80)

 enemy_rect = pygame.Rect(enemy_x, enemy_y, 50, 80)

 # Se c'è collisione e il personaggio non è già KO, riceve un colpo

 if player_rect.colliderect(enemy_rect) and fsm.state != "KO":

 fsm.handle_event("hit")

 # ----------------------------

 # RENDER

 # ----------------------------

 # Pulisco lo schermo

 screen.fill((30, 30, 30))

 # Mappa colori per visualizzare lo stato corrente del personaggio

 colors = {

 "Idle": (200, 200, 200), # Grigio chiaro

 "Walk": (50, 150, 255), # Blu

 "Jump": (255, 200, 50), # Giallo

 "Hit": (255, 80, 80), # Rosso chiaro

 "KO": (80, 0, 0) # Rosso scuro

 }

 # Disegno del personaggio con colore in base allo stato

 pygame.draw.rect(screen, colors[fsm.state], player_rect)

 # Disegno del nemico

 pygame.draw.rect(screen, (180, 0, 0), enemy_rect)

 # Testo informativo in alto a sinistra (stato e HP)

 font = pygame.font.SysFont(None, 32)

 text = font.render(f"Stato: {fsm.state} HP: {fsm.hp}", True, (255, 255, 255))

 screen.blit(text, (10, 10))

 # Aggiorno schermo e limito il frame rate

 pygame.display.flip()

 clock.tick(60)

