Automi a stati finiti (ASF o FSM)

di Massimo Vailati
06/02/2026

PYTHON AUTOMI VIDEOGIOCHI SIMULAZIONE STATI COMPORTAMENTI

LICEO, SCIENTIFICO S.A., TT INFORMATICA

Contenuto: introduzione agli automi a stati finiti come modelli matematici fondamentali per rappresentare
comportamenti sequenziali, validare input e modellare sistemi reattivi, mostrando la Lloro utilita sia nella didattica che
nella progettazione di software e giochi.

Attivita pratica: la realizzazione di un automa per validare numeri interi positivi, la simulazione degli stati di un
personaggio in un videogioco, e la creazione di un prototipo di videogioco con controllo del personaggio.

Nel mondo dell'informatica teorica, i linguaggi formali e gli automi a stati finiti (Finite State Machines, FSM) rappresentano
strumenti fondamentali per comprendere come funzionano la computazione, la validazione dei dati e persino alcune logiche di
gioco. Anche se spesso vengono percepiti come concetti astratti, possono rivelarsi estremamente pratici nella didattica,
soprattutto se tradotti in attivita laboratoriali concrete.

Gli automi a stati finiti (ASF) sono modelli matematici usati per rappresentare comportamenti sequenziali. Il loro scopo &
descrivere un sistema che, in ogni momento, si trova esattamente in uno di un numero finito di stati possibili. Gli ASM sono
capaci di:
Rappresentare comportamenti sequenziali (es. stati di un personaggio di gioco: “fermo”, “cammina”, “salta”...)
Validare stringhe di input (es. controllare se un identificatore & valido, o se una password rispetta un formato)
Modellare sistemi reattivi (es. menu interattivi, sistemi di controllo, semafori)

Sempilificare la progettazione e il debugging: uno stato alla volta, nessuna ambiguita

https://area-informatica-ss2g.hubscuola.it/il-blog/?author=Massimo%20Vailati
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Python
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Automi
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Videogiochi
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Simulazione
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Stati
https://area-informatica-ss2g.hubscuola.it/il-blog/?categories=Comportamenti
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=liceo
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=scientifico-sa
https://area-informatica-ss2g.hubscuola.it/il-blog/?school_course=tt-informatica

Un automa a stati finiti & composto da:

un insieme finito di stati

- Tutte Lle possibili condizioni in cui il sistema si pud trovare

uno stato iniziale

- Lo stato in cui il sistema si trova all'inizio.

uno o piu stati finali (a seconda del contesto)

- Sono opzionali e indicano un risultato valido o completato.

un alfabeto di simboli in ingresso

- L'insieme di tutti i possibili eventi o simboli che causano un cambiamento
una funzione di transizione

- Regola che indica come cambiare stato in base all'input

Una possibile rappresentazione grafica &€ un diagramma o grafo orientato: ciascun nodo & uno stato, e le frecce etichettate
indicano le transizioni.

Transiz A

Transiz B

Transiz C

In questo esempio UASF ha 3 stati: Stato 1, Stato 2 e Stato 3 (stato finale). La Transizione A porta UASF dallo Stato 1 allo Stato 2,
Lla Transizione B porta 'ASF dallo Stato 2 allo Stato1 e la Transizione C porta UASF dallo Stato 2 allo Stato 3.

Esempi pratici di ASF

1 - Il Semaforo Stradale

Questo € l'esempio classico di un sistema reattivo modellato da un ASF.

Stati: Rosso, Verde, Giallo.

Input (Alfabeto): Un segnale di Tempo Scaduto (il timer interno).
Funzione di Transizione:

DA Rosso + Input Tempo Scaduto A Verde

DA Verde + Input Tempo Scaduto A Giallo

DA Giallo + Input Tempo Scaduto A Rosso

In questo modello, lo stato attuale determinail prossimo stato, garantendo un ciclo di funzionamento coerente e non ambiguo.

2 — Il distributore automatico

Un distributore automatico € un sistema che deve ricordare lo stato corrente dei soldi inseriti per determinare Le azioni
successive.

Stati

Gli stati rappresentano l'ammontare totale di credito inserito e definiscono cid che l'utente puo fare:

S0 (Iniziale): Nessun Credito (9€). La macchina & in attesa di monete.
S1 Credito Parziale (ad esempio, 0.50€). Non sufficiente per il prodotto.

S2 (Finale): Credito Sufficiente (ad esempio, 1.00€ o piu). Il prodotto pud essere erogato

Alfabeto di Input

Gli input sono gli eventi che provocano le transizioni:

M050: Inserimento di una moneta da 0.50€.
M100: Inserimento di una moneta da 1.00€.
B: Pressione del Pulsante di Acquisto (se il credito & sufficiente).

R: Pressione del Pulsante di Ritiro Resto.

Funzione di Transizione: Regole di Funzionamento

Le transizioni determinano come si muove il sistema tra gli stati.

Stato Input Stato Azione della Macchina
Attuale Ricevuto Successivo (Output)
S0(0.00€) MO50 S1 (0.50€) Nessuna. Aggiorna il credito.
S0(0.00€) M100 S2 (1.00€) Nessuna. Aggiorna il credito.
S1 (0.50€) MO50 S2 (1.00€) Nessuna. Aggiorna il credito.
S1 (0.50€) M100 S2 (1.50€) Nessuna. Aggiorna il credito.
S2 S2 (Credito : : :
(>=1.00€) MO50 +0.50€) Nessuna. Aggiorna il credito.
S2 S2 (Credito : : :
(>=1.00€) M100 +1.00€) Nessuno. Aggiorna il credito
52 B (Acquisto) S0 (0.00€) Eroga il prodotto; Eroga il resto
(>=1.00€) ' ’ '
S2/S1 R (Resto) SO0 (0.00€) Eroga tutto il credito come resto.
: Lampeggia LED: "Credito
S0/51 B (Acquisto) Stato Corrente Insufficiente!" (Output di errore)

Rappresentazione mediante grafo

MO50
M100

Attivita pratica n.1

Validazione dell'input

La validazione dell'input & uno dei contesti piu efficaci per far comprendere agli studenti il potere dei linguaggi formali e degli
automi a stati finiti. Molti programmatori usano subito Le espressioni regolari per controllare il formato di un dato, ma spesso
non capiscono davvero perché funzionano o che cosa rappresentano.

Usare una FSM permette invece di far emergere:

la logica formale dietro la validazione
il concetto di riconoscimento di linguaggi

L'utilita pratica degli automi nella progettazione di software robusto

Implementiamo un automa a stati finiti che riconosca numeri interi positivi, ovvero stringhe costituite da una o piu cifre (0—9)
con:

nessuno spazio
nessuna lettera
nessun simbolo

almeno una cifra

Esempi accettati:"0","5","123","999999"
Esempi rifiutati:""," 123","12 34","-5","12.5","3a7"

Progetto dell’automa

Stati

S — stato iniziale
Attende la prima cifra

D — “dentro numero”
Dopo aver letto almeno una cifra

X — stato di errore
Se arriva un carattere non valido

D é stato accettante

Transizioni

Stato| Input |Nuovo stato
S cifra D
S altro X
D cifra D
D altro X
X qualunque| X

Grafo

cifra

altro

qualunque

Codice Python
Ecco una versione della FSM completamente implementata (input.py)

Insieme degli stati dell'automa:

S = stato iniziale

D = stato "dentro numero" (accettante)
X = stato di errore

states = {"S", "D", "X"}

Stato iniziale
start = "S"

Stati accettanti (qui solo D)
accepting = {"D"}

def get_symbol(c):
Restituisce il tipo di simbolo letto.
L'automa non lavora direttamente sui caratteri,
ma su categorie astratte: 'digit' o 'other'.
return "digit" if c.isdigit() else "other"

Funzione di transizione:
(stato_corrente, simbolo) » nuovo_stato
transitions = {
("S", "digit"): "D", # La prima cifra rende il numero valido
("S", "other"): "X", # Se gia il primo carattere non é cifra » errore

("D", "digit"): "D", # Altre cifre mantengono la validita
("D", "other"): "X", # Qualunque carattere non numerico dopo cifre > errore

("X", "digit"): "X", # Una volta in errore, si rimane in errore
("X“, “Other“): "X“,

def run_fsm(s):
Esegue l'automa sulla stringa s.
Ritorna True se s viene riconosciuta come numero intero positivo.

Lo stato corrente parte sempre dallo stato iniziale
state = start

Analizza la stringa carattere per carattere
forcins:

cifra

Converte il carattere in un 'simbolo’ astratto
symbol = get_symbol(c)

Applica la transizione definita nell'automa
state = transitions[(state, symbol)]

La stringa & accettata solo se lo stato finale & uno stato accettante
return state in accepting

print(run_fsm("12345")) # True: tutte cifre

print(run_fsm("12a45")) # False: contiene una lettera

print(run_fsm(")) # False: stringa vuota - rimane in S (non accettante)
print(run_fsm("@")) # True: singola cifra & valida

print(run_fsm(" 123")) # False: spazio iniziale - errore

print(run_fsm("42 ")) # False: spazio finale > errore

Attivita pratica n.2

Controllare il personaggio di un videogioco

Immaginiamo un semplice videogioco 2D di tipo platform. Il personaggio puo:

stare fermo (Idle)
camminare (Walk)
saltare (Jump)
subire un danno (Hit)
essere KO (KO)

Ogni stato definisce cosa il personaggio sta facendo e quali transizioni sono possibili.
Stati possibili e logica

1. Idle
Il personaggio non sta compiendo azioni.
Transizioni:

Idle » Walk (se viene premuto un tasto di movimento)
Idle » Jump (se si preme il tasto “salta”)

Idle > Hit (se si subisce un attacco)

2. Walk
Il personaggio si muove orizzontalmente.
Transizioni:

Walk - Idle (se si rilasciano i tasti di movimento)
Walk - Jump (se si preme “salta”)
Walk > Hit (se colpito)

3. Jump
Il personaggio € in aria.
Transizioni:

Jump - Idle (quando atterra)

Jump - Hit (se viene colpito in aria)

4. Hit

Il personaggio & colpito e riproduce un‘animazione di danno.

Transizioni:

Hit > Idle (se resta HealthPoints > @ e finisce l'animazione)
Hit » KO (se HealthPoints <= @)

5.KO

Il personaggio é sconfitto. Stato finale.

Transizioni:

KO - (nessuna)

Grafo

Codice Python

attacco tasto movimento

hp=0
fine anim.

rilascio

tasto salta
atterra

colpito tasto salta

1L codice seguente (character.py) propone una struttura semplice da far implementare agli studenti.
Non & un motore di gioco completo, ma una base concettuale.

class CharacterFSM:
def __init__(self):

self.state = "Idle"

selfhp=3

def handle_event(self, event):
print(f'Stato attuale: {self.state}. Evento: {event}")

if self.state == "Idle":
if event == "move":
self.state = "Walk"
elif event == "jump":
self.state = "Jump"
elif event == "hit":
self.state = "Hit"

elif self.state == "Walk":
if event == "stop":
self.state = "Idle"
elif event == "jump":
self.state = "Jump"
elif event == "hit"
self.state = "Hit"

elif self.state == "Jump"™:
if event == "land":
self.state = "Idle"
elif event == "hit":
self.state = "Hit"

elif self.state == "Hit"
selfhp-=1
if self.hp <= @:
self.state = "KO"
else:
self.state = "Idle"

print(f"Nuovo stato: {self.state}\n")

char = CharacterFSM()
char.handle_event("move")
char.handle_event("jump")
charhandle_event("land")
char.handle_event("hit")
charhandle_event("hit")
char.handle_event("hit")

Esecuzione

Stato attuale: Idle. Evento: move
Nuovo stato: Walk

Stato attuale: Walk. Evento: jump
Nuovo stato: Jump

Stato attuale: Jump. Evento: land
Nuovo stato: Idle

Stato attuale: Idle. Evento: hit
Nuovo stato: Hit

Stato attuale: Hit. Evento: hit
Nuovo stato: Idle

Stato attuale: Idle. Evento: hit
Nuovo stato: Hit

Attivita pratica n.3

Prototipo di videogioco con controllo del personaggio

Il codice seguente (gameplay.py) propone la realizzazione di un prototipo di videogioco con personaggio controllato dallo
stesso FSM considerato nellattivita pratica numero 2. Per l'esecuzione & necessario installare pygame (pip install

pygame).

Comportamenti implementati:

Stati: Idle, Walk, Jump, Hit, KO
Tasti:

- Frecce sinistra/destra » movimento

- Barra spaziatrice -» salto

Cravita e atterraggio simulati

Colpo che riduce HP e pud mandare KO

Il programma visualizza un personaggio come un semplice rettangolo che cambia colore in base allo stato.

Idle (grigio) » fermo
Walk (blu) - si muove
Jump (giallo) > salta
Hit (rosso) - colpito

KO (rosso scuro) »> sconfitto

Il log della console mostra tutte le transizioni.

Per rendere dinamico il gioco é stato aggiunto

Un nemico rappresentato da un quadrato rosso scuro che si muove avanti e indietro.
Una funzione di collisione tra personaggio ed enemy.

Quando c’é collisione » la FSM del personaggio riceve l'evento "hit".

(] pygame window

Stato: Walk HP: 10

Codice Python

import pygame
import sys

class CharacterFSM:
def __init__(self):
Stato iniziale del personaggio
self.state = "Idle"
Punti vita
selfhp =10
Velocita verticale usata per la fisica del salto
self.y_velocity = @
Flag che indica se il personaggio & a terra (puo saltare)
self.is_on_ground = True

def handle_event(self, event):
Stampa evento e stato corrente (utile per debug)
print(f"EVENTO: {event}, Stato: {self.state}")

LOGICA DEGLI STATI: transizioni basate sull'evento ricevuto
if self.state == "Idle":

if event == "move":
Quando ci si muove da fermi -> camminare
self.state = "Walk"
elif event == "jump"™:
Inizio salto
self.state = "Jump"
elif event == "hit":
Subito dopo essere colpiti
self.state = "Hit"

elif self.state == "Walk":

if event == "stop":
Stop movimento -> tornare fermi
self.state = "Idle"

elif event == "jump":
Saltare anche mentre si cammina
self.state = "Jump"

elif event == "hit":
Colpito mentre cammina
self.state = "Hit"

elif self.state == "Jump":
if event == "land":
Atterraggio -> tornare a Idle
self.state = "Idle"
elif event == "hit":
Colpito in aria
self.state = "Hit"

elif self.state == "Hit"
Quando si entra nello stato Hit si decrementano gli HP
selfhp-=1
if self.hp <= @:
Se gli HP finiscono -> KO permanente
self.state = "KO"
else:
Altrimenti si torna a Idle dopo l'animazione di hit
self.state = "Idle"

Stampa il nuovo stato (utile per debug)
print(f" > Nuovo stato: {self.state}")

pygame.init()
screen = pygame.display.set_mode((800, 600))
clock = pygame.time.Clock()

Posizione iniziale del personaggio (x, y)

x = 400

y = 500

Velocita orizzontale del personaggio

speed =5

Accelerazione dovuta alla gravita usata per il salto
gravity = 0.8

Istanza della macchina a stati del personaggio
fsm = CharacterFSM()

Posizione del nemico

enemy_x = 200

enemy_y = 500

Velocita di movimento del nemico e direzione (1 destra, -1 sinistra)
enemy_speed = 3

enemy_direction =1 # 1 = destra, -1 = sinistra

while True:
Lettura input tastiera
keys = pygame.key.get_pressed()
moved = False # flag per capire se il personaggio si € mosso orizzontalmente

Gestione eventi di sistema (es. chiusura finestra)
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()

--- MOVIMENTO ORIZZONTALE ---
if keys[pygame.K_LEFT]:

X -= speed

moved = True
if keys[pygame.K_RIGHT]:

X += speed

moved = True

Transizioni tra Idle <-> Walk in base al movimento orizzontale
if moved and fsm.state == "Idle":

fsm.handle_event("move"
if not moved and fsm.state == "Walk":

fsm.handle_event("stop")

--- SALTO ---
Se premi SPACE e sei a terra, inizia il salto
if keys[pygame K_SPACE] and fsm.is_on_ground:
fsm.is_on_ground = False
Impulso iniziale verso l'alto (valore negativo per y decresce verso L'alto nello schermo)
fsm.y_velocity = -15
fsm.handle_event("jump")

if not fsm.is_on_ground:
Aggiorno posizione verticale in base alla velocita verticale
y += fsm.y_velocity
Applico gravita incrementando la velocita verso il basso
fsm.y_velocity += gravity

Rilevo atterraggio sul "terreno" (y = 500)
if y >= 500:
y = 500

fsm.is_on_ground = True
fsm.y_velocity = ©@
Al ritorno a terra, se ero in Jump genero evento land
if fsm.state == "Jump":
fsm.handle_event("land")

Sposta il nemico e inverte direzione ai limiti
enemy_x += enemy_speed * enemy_direction

if enemy_x <= 100 or enemy_x >= 650: # limiti di pattuglia del nemico
enemy_direction *= -1

Rette di collisione (possono essere sostituite da hitbox piu precise)
player_rect = pygame.Rect(x, y, 50, 80)
enemy_rect = pygame.Rect(enemy_x, enemy_y, 50, 80)

Se c'é collisione e il personaggio non € gia KO, riceve un colpo
if player_rect.colliderect(enemy_rect) and fsm.state != "KO":
fsm.handle_event("hit")

Pulisco lo schermo
screen.fill((30, 39, 390))

Mappa colori per visualizzare lo stato corrente del personaggio
colors = {

"Idle": (200, 200, 200), # Grigio chiaro

"Walk": (50, 150, 255), # Blu

"Jump": (255, 200, 50), # Giallo

"Hit": (255, 80, 89), # Rosso chiaro

"KO": (80, 0, 0) # Rosso scuro

Disegno del personaggio con colore in base allo stato
pygame.draw.rect(screen, colors[fsm.state], player_rect)

Disegno del nemico
pygame.draw.rect(screen, (180, @, @), enemy_rect)

Testo informativo in alto a sinistra (stato e HP)

font = pygame.font.SysFont(None, 32)

text = font.render(f"Stato: {fsm.state} HP: {fsm.hp}", True, (255, 255, 255))
screen.blit(text, (10, 10))

Aggiorno schermo e limito il frame rate

pygame.display.flip()
clock tick(6@)

